Energy–time uncertainty relation for driven quantum systems
نویسندگان
چکیده
منابع مشابه
Reformulating the Quantum Uncertainty Relation
Uncertainty principle is one of the cornerstones of quantum theory. In the literature, there are two types of uncertainty relations, the operator form concerning the variances of physical observables and the entropy form related to entropic quantities. Both these forms are inequalities involving pairwise observables, and are found to be nontrivial to incorporate multiple observables. In this wo...
متن کاملSum Uncertainty Relation in Quantum Theory
We prove a new sum uncertainty relation in quantum theory which states that the uncertainty in the sum of two or more observables is always less than or equal to the sum of the uncertainties in corresponding observables. This shows that the quantum mechanical uncertainty in any observable is a convex function. We prove that if we have a finite number N of identically prepared quantum systems, t...
متن کاملHeisenberg Uncertainty Relation in Quantum Liouville Equation
We consider the quantum Liouville equation and give a characterization of the solutions which satisfy the Heisenberg uncertainty relation. We analyze three cases. Initially we consider a particular solution of the quantum Liouville equation: the Wigner transform f x,v,t of a generic solution ψ x;t of the Schrödinger equation. We give a representation of ψ x, t by the Hermite functions. We show ...
متن کاملConstant flux relation for driven dissipative systems.
Conservation laws constrain the stationary state statistics of driven dissipative systems because the average flux of a conserved quantity between driving and dissipation scales should be constant. This requirement leads to a universal scaling law for flux-measuring correlation functions, which generalizes the 4/5th law of Navier-Stokes turbulence. We demonstrate the utility of this simple idea...
متن کاملUncertainty Relation in Quantum Mechanics with Quantum Group Symmetry
We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncommutative geometry, a length and a momentum scale appear, leading to the existence of minimal nonzero uncertainties in the positions and momenta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2013
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/46/33/335302